
RECYCLEd CardStock Documentation
Release 0.5

Mark Goadrich

Jul 17, 2023

Contents:

1 Overview 1

2 Requirements 3

3 Code 5
3.1 RECYCLE . 5
3.2 CardStock . 19
3.3 AIPlayer . 20

i

ii

CHAPTER 1

Overview

CardStock is a General Game Playing engine for card games implemented in C#. Games are written in RECYCLE,
a card game description language, and then simulations are run with random, simple, and complex AI players. Card-
Stock can then analyze the games to determine heuristics about the games such as fairness, decisiveness, drama, or
clarity, and generate transcripts of each simulation for further study.

There are currently 30 games coded in RECYCLE, from genres such as press-your-luck, fishing, adding, matching,
draw-and-discard, and trick-taking games.

Attention: We are currently in the process of abstracting and refactoring CardStock to allow for new game
functionality and setting up a modular system for a tournament of AI players. Please check back for further
progress on these issues.

1

RECYCLEd CardStock Documentation, Release 0.5

2 Chapter 1. Overview

CHAPTER 2

Requirements

Visual Studio

• Mac

• Windows

3

https://www.visualstudio.com/vs/visual-studio-mac/
https://visualstudio.microsoft.com/vs/

RECYCLEd CardStock Documentation, Release 0.5

4 Chapter 2. Requirements

CHAPTER 3

Code

Source code available at Github

3.1 RECYCLE

RECYCLE is a game description language that allows for an algorithmic representation of common core mechanisms
and elements of card games. RECYCLE stands for REcursive CYclic Card game LanguagE, referring to the primary
feature of the language: the recursion of game stages containing cycles of player turns. The language resembles the
LISP programming language, often having a large number of nested instructions that control the flow of the games.

The process of writing game rules in a natural language can be fraught with ambiguities, often necessitating clarifica-
tions after publication. Encoding a game in RECYCLE can be useful for illuminating the underlying formal structure
of a game design, providing insight into avenues for targeted or large-scale refinement, and resolving potential ambi-
guities.

In RECYCLE, function names are all lowercase, data types are capitalized, and Strings are all caps.

3.1.1 Base Types

There are four main base elements in RECYCLE, String, Integer, Card, and Boolean.

String

Strings are used for text within RECYCLE games. They are composed of all capital letters. Strings are the name
portion of a CardCollection, and the key/value pairs of a Card.

STOCK HAND PILE TRICK SCORE GREEN SUIT HEARTS

The cardatt function also will return a String. It is used to look up the value stored a Card for a given key. If the key
is not found or the card does not exist, this will return the empty String “”.

5

https://github.com/mgoadric/cardstock

RECYCLEd CardStock Documentation, Release 0.5

(cardatt [String] [Card])

Integer

Integer literals are contiguous sequences of digits from 0 to 9. Currently only positive integers are supported with
literals, but negative integers can be acheived through various actions.

0 23 999

Standard Integer operators can be applied to Integers to calculate new Integers, with addition, subtraction, multiplica-
tion, integer division (//) and modular division (mod).

(+ [Integer] [Integer])
(- [Integer] [Integer])
(* [Integer] [Integer])
(// [Integer] [Integer])
(mod [Integer] [Integer])

Three functions will return Integers. First, a Card can be scored using the values mapped through a PointMap.

(score [Card] using [PointMap])

Similarly, each Card in a CardCollection can be individually scored with a PointMap and then these scores are
summed.

(sum [CardCollection] using [PointMap])

The size of a CardCollection can be calculated and returned as an Integer.

(size [CardCollection])

Integers are stored as part of the game, belonging either to the Game, a Player, or a Team. These IntegerStorage_
locations are named with a String.

([Game | Player | Team] sto [String])

Card

A card is a set of maps from a String key to a String value, such as RANK => KING, COLOR => BLUE, and VALUE
=> FIVE.

A card can never be directly described, but is created through the CreateDeck setup and referenced through locations
in a CardCollection.

(top [CardCollection])
(bottom [CardCollection])
([Integer] [CardCollection])

Besides using references to individual specific cards in the CardCollection, two functions can find either the minimum
or maximum card in a collection when given a PointMap from the card dictionaries to an integer. If there is a tie, the
max or min is decided randomly among all tied cards.

(max [CardCollection] using [PointMap])
(min [CardCollection] using [PointMap])

6 Chapter 3. Code

RECYCLEd CardStock Documentation, Release 0.5

Finally, a virtual card (for example from a minimum or union operation) can be converted into an actual card, so that
any move operation moves the card in the CardCollection to which it belongs.

(actual [Card])

Boolean

Booleans in RECYCLE comprise the standard True and False, derived mainly from comparisons between other data
types, or conjunctions and disjunctions of other Booleans. They are only evaluated, never explicitly stated as literal
True or False.

(and [Boolean] [Boolean]+)
(or [Boolean] [Boolean]+)
(not [Boolean])

(> [Integer] [Integer])
(< [Integer] [Integer])
(>= [Integer] [Integer])
(<= [Integer] [Integer])
(== [Integer] [Integer])
(!= [Integer] [Integer])

(== [Card] [Card])
(!= [Card] [Card])

(== [String] [String])
(!= [String] [String])

(== [Player] [Player])
(!= [Player] [Player])

(== [Team] [Team])
(!= [Team] [Team])

3.1.2 Owners

There are three main Owners of data in Recycle: the Game, each Player, and each Team. The Player and Team types
are more specific types of Owners, allowing different functionality.

Game

The Game holds storage for both Integer or CardCollection data. These are referenced by a String name. For example
an Integer storage for the number of total chips in the game could be

(game sto CHIPS)

And a CardCollection for the stock of face-down cards would be

(game iloc STOCK)

3.1. RECYCLE 7

RECYCLEd CardStock Documentation, Release 0.5

Player

As above, a Player tracks storage for both Integer or CardCollection data. These are referenced by a String name. To
reference an individual Player, we can directly refer to the turn order of a Player.

([Integer] player)

Also, based on the current turn within a stage, we can referentially talk to the current, previous, and next player. Turn
order is determined clock-wise, and the previous player will always use this turn order. The next player also uses this
turn order by default, but could be altered within this stage by a NextAction queueing up a different player to go next.

(current player)
(previous player)
(next player)

A Player can also be found by determining the owner of a Card.

(owner [Card])

Team

As above, a Player tracks storage for both Integer or CardCollection data. These are referenced by a String name. To
reference an individual Team, we can directly refer to the turn order of a Team.

([Integer] team)

Also, based on the current turn within a stage, we can referentially talk to the current, previous, and next team. Turn
order is determined clock-wise, and the previous team will always use this turn order. The next team also uses this
turn order by default, but could be altered within this stage by a NextAction queueing up a different team to go next.

(current team)
(previous team)
(next team)

Finally, a Team can be found by asking a Player what team they are on. A Player can only be on one Team at a time.

(team [Player])

3.1.3 Collections

Many of the base data types can be grouped into Collections. Collections provide a way for Aggregation to iterate
through for actions to be taken or booleans to be processed with each Collection element.

StringCollection

A comma-separated list of String primitives is a StringCollection.

(YELLOW, GREEN, BLUE, RED, WHITE)

8 Chapter 3. Code

RECYCLEd CardStock Documentation, Release 0.5

IntegerCollection

Currently, the only way to write an IntegerCollection is as a range of Integer data, starting at a minimum value, and
increasing by one up to but not including the maximum value.

(range [Integer] .. [Integer])

CardCollection

A CardCollection is an ordered list of Card objects, found on the Game, Player, and Team objects. These CardCollec-
tions can be directly accessed using their Owner_, the visibility modifier, and the String name for that CardCollection.

([Game | Player | Team] (vloc | iloc | hloc | mem) [String])

Visibility modifiers can be one of

• vloc: visible to everyone

• iloc: visible to owner, invisible to others

• hloc: invisible to everyone, including owner

• mem: copies of cards in memory, visible to all

The filter function can be used to create a CardCollection subset from another CardCollection. A Boolean statement
will evaluate as true if an element of the original CardCollection, denoted by a Variable, will be included in the filter.

(filter [CardCollection] [Variable] [Boolean])

A CardCollection can be created through the union of other CardCollections, for example, we can create one Card-
Collection that will hold all the cards played by players to their individual TRICK CardCollections so that we can
determine the highest played card.

(union [CardCollection]*)

Finally, we can access individual elements of a CardCollectionCollection to obtain a CardCollection, following the
top, bottom, or index methodology.

(top [CardCollectionCollection])
(bottom [CardCollectionCollection])
([Integer] [CardCollectionCollection])

CardCollectionCollection

A CardCollectionCollection can be created through the tuples function. This will return subsets of the given CardCol-
lection, where the Card elements are found to be equal according to a PointMap. Only those subsets of size equal to
the given Integer will be returned.

(tuples [Integer] [CardCollection] 'using' [PointMap])

PlayerCollection

The current players of the game can be referenced as a PlayerCollection. For all players, simply use the word “player”.

Within a stage, players not equal to the current player can be referenced with

3.1. RECYCLE 9

RECYCLEd CardStock Documentation, Release 0.5

(other player)

Alternately, players can be added to a collection based on Boolean attributes assessed on each Variable from a Player-
Collection filter.

(filter [PlayerCollection] [Variable] [Boolean])

TeamCollection

The current teams of the game can be referenced as a TeamCollection. For all teams, simply use the word “team”.

Within a stage, teams not equal to the current team can be referenced with

(other team)

Alternately, teams can be added to a collection based on Boolean attributes assessed on each Variable from a Team-
Collection filter.

Cycle of teams, Denoted with the word “team”

(filter [TeamCollection] [Variable] [Boolean])

3.1.4 PointMap

A Card is a map between String and String types, therefore we need another data structure to capture Integer values
of cards for scoring or ranking. A PointMap is a map between two String pieces and an Integer. The first String is the
Card key and the second is the Card value. When applied to a Card, the points will be a sum of all of the key-value
pairs that are found in this Card. PointMaps are stored in a Variable.

(put points [Variable] (([String] ([String])) [Int])

3.1.5 Aggregation

One of the powerful things that Collections allow is iteration and aggregation. Two keywords, “all”, and “any”, can be
used with collection with varying results. Each element of the Collection_ will be assigned to a Variable that can be
used in the final portion.

All

When the final portion of the all aggregation is a Boolean, the all will also be a Boolean, constructing an AND over
the individual elements.

(all [Collection] [Variable] [Boolean])

For example, the following is a Boolean that will be True if all players have a Hand size of zero.

1 (all player 'P
2 (== (size ('P iloc HAND)) 0))

When the final element is a MultiAction_, the all will become a sequence over the actions, in order of the items in the
collection.

10 Chapter 3. Code

RECYCLEd CardStock Documentation, Release 0.5

(all [Collection] [Variable] [MultiAction])

We can see this in the following code to move each player’s top Trick card to the Discard pile.

1 (all player 'P
2 (move (top ('P vloc TRICK))
3 (top (game vloc DISCARD))))

When the final element is a CardCollection, the all will become a CardCollectionCollection.

(all [Collection] [Variable] [CardCollection])

This can be used to merge each player’s individual CardCollection elements, such as

1 (union (all player 'P ('P vloc TRICK)))

When the final element is an Integer, the all will become a sum of those Integer elements.

(all [Collection] [Variable] [Integer])

This is particularly useful for Integer storage locations which are part of an Owner_.

TODO FIND EXAMPLE!

Any

When the final portion of the any aggregation is a Boolean, the any will also be a Boolean, constructing an ON over
the individual elements.

(any [Collection] [Variable] [Boolean])

For example, the following is a Boolean that will be True if any player has Points greater than 10.

1 (any player 'P
2 (> ('P sto POINTS) 10))

When the final element is a MultiAction_, the any will become a choice over the actions.

(any [Collection] [Variable] [MultiAction])

For example, the following is how a player can choose to play any Card in their Hand to the current Trick of a
trick-taking game.

1 (any ((current player) iloc HAND) 'AC
2 (move 'AC
3 (top ((current player) vloc TRICK))))

3.1.6 Variable

Variables, like String constants, must be all caps. They also must begin with a ‘ character.

'C 'AC 'COLOR 'P

Variables can be implicitly assigned from a Collection_ inside the filter function or Aggregation functions.

There are two other ways to create Variables, with declare or let.

3.1. RECYCLE 11

RECYCLEd CardStock Documentation, Release 0.5

declare

The declare function must be at the beginning of a RECYCLE program. It is useful for creating program-wide
constants or data that cannot be altered through the game. The data can be anything explicitly defined, commonly
String and Integer, or a StringCollection type.

(declare [Type] [Variable])

let

The let function is a local declaration of a Variable, followed by a segment of code where this Variable will be valid.

(let [Type] [Variable] [Expression])

3.1.7 Action

Actions are the way that RECYCLE allows either the players or the game to update the data structures and rearrange
the cards in the game.

TeamCreateAction

Teams can be created at any time during the game, and must be created in the initialization section of the game. The
following code will make four teams, one for each player, in a four-person game. Players are indexed starting at 0.

1 (create teams (0) (1) (2) (3))

To add more than one player to a team, write a comma-separated list with each team member. This code will create
two teams in a four-person game, where team members are seated opposite each other.

1 (create teams (0, 2) (1, 3))

ShuffleAction

A CardCollection can be shuffled at any time into a new random permutation of the Card objects.

(shuffle [CardCollection])

CardMoveAction

Once created, Card objects can be moved from location to location with the move action. The first Card must not refer
to a memory location, and the second card cannot be a memory or a virtual location.

(move [Card] [Card])

CardRememberAction

Card objects can also be copied into memory, for example to remember which card was led, or what suit is trump.
The second Card must refer to a memory location.

12 Chapter 3. Code

RECYCLEd CardStock Documentation, Release 0.5

(remember [Card] [Card])

CardForgetAction

Since memory locations hold Card objects that are copies, they should not be moved but instead forgotten when they
are no longer needed.

(forget [Card])

IntAction

IntegerStorage locations can be changed in three ways. We can set the storage to be a particular Integer, increment the
current value by an Integer, or decrement the current value by an Integer.

(set [IntegerStorage] [Integer])
(inc [IntegerStorage] [Integer])
(dec [IntegerStorage] [Integer])

NextAction

The order in the current cycle can be altered in two ways. The first is to change the player that is queued to go next.
This can be the current player, which will give the player another turn, the previous player to reverse the play direction,
or the owner of a particular Card, such as the winning card of a trick.

(cycle next (owner [Card]))
(cycle next current)
(cycle next previous)

SetPlayerAction

Second, the current player in the cycle can be altered immediately with the following similar actions.

(cycle current (owner [Card]))
(cycle current next)
(cycle current previous)

TurnAction

A player sometimes needs the opportunity to pass. This Action is a way to have the player taken an action that makes
no change to the game state.

(turn pass)

RepeatAction

Actions can be repeated with the repeat action. The action will be repeated for an Integer number of times.

3.1. RECYCLE 13

RECYCLEd CardStock Documentation, Release 0.5

(repeat [Integer] [Action])

One additional way to repeat an action is the “repeat all” for a MoveAction_. This will move cards one by one until
there are no more Card objects in the first location.

(repeat all [MoveAction])

3.1.8 GameFlow

ConditionalAction

Action blocks can also be prefaced with a boolean condition to make the execution of the action dependent on the
current state of the game.

1 ([Boolean] [Action])

Do

Action blocks can be combined to form a sequence of actions. These can also be ConditionalAction objects. The
aggregate of these actions is called a Do, and can also have nested inside more Do blocks. These actions will be
executed one after another in order from top to bottom.

(do ([ConditionalAction | Action | Do]*))

Choice

A Choice block is a way to set up options for the player in the game. Instead of operating sequentially, the Action
objects found to be valid based on their conditions will be grouped and presented to the player, who then must make a
choice among them for the game to proceed. A Do can be within a Choice, giving the player an option of choosing a
set of sequential actions.

(choice ([ConditionalAction | Action | Do]*))

Stage

A Stage block activates either a Player or Team cycle. The components of a Stage will be evaluated, with each member
of the cycle becoming the “current” member, until the Boolean end condition is met. The order of members in the
cycle can be altered with the NextAction and SetPlayerAction described above.

(stage player [Boolean] [Do | Choice | Stage]*)
(stage team [Boolean] [Do | Choice | Stage]*)

3.1.9 Setup

Each game begins with a Setup section, following any Declare statements. The Setup section includes a CreatePlayers
action, a CreateTeams action, and at least one CreateDeck action. Multiple decks can be added with either multiple
CreateDeck actions or through a RepeatAction containing a CreateDeck action.

14 Chapter 3. Code

RECYCLEd CardStock Documentation, Release 0.5

CreatePlayers

In the Setup, each player is created identical, so we only need to know the number of players in the game to create
each player. A Player is placed into the player cycle.

(create players [Integer])

CreateTeams

See TeamCreateAction above.

CreateDeck

Card objects are created and placed in a CardCollection with the CreateDeck function. A single key can be listed for
a Card, followed by all values of that attribute, and a Card will be made with one of each value. The following code
will make three Card objects.

1 (create deck (game iloc STOCK) (deck (COLOR (RED, BLUE, GREEN))))

More complicated decks can be made by adding more keys. If multiple keys are listed, each with their own values, then
a Card will be created for each permutation of these values. Here, will will create six Card objects, RED-SMALL,
RED-LARGE, BLUE-SMALL, BLUE-LARGE, GREEN-SMALL, and GREEN-LARGE.

1 (create deck (game iloc STOCK) (deck (COLOR (RED, BLUE, GREEN))
2 (SIZE (SMALL, LARGE))))

Keys can also be nested inside as values inside other key lists. The following code is used to make a full 52 Card deck,
with RANK, COLOR, and SUIT keys.

1 (create deck (game iloc STOCK) (deck (RANK (ACE, TWO, THREE, FOUR, FIVE, SIX, SEVEN,
2 EIGHT, NINE, TEN, JACK, QUEEN, KING))
3 (COLOR (RED (SUIT (HEARTS, DIAMONDS)))
4 (BLACK (SUIT (SPADES, CLUBS))))))

3.1.10 Scoring

The Scoring section of the game details how to determine the ranking of players once the game is complete. The scores
can be based on any Integer in the game, commonly an IntegerStorage, but possibly the size of a CardCollection or
any other Integer that can be calculated. The (current player) can be used to denote that this scoring will be applied to
each player in the game.

You can either sort these scores from highest to lowest so that the max is regarded as the best score, or lowest to highest
so that the min is the best score.

(scoring max [Integer])
(scoring min [Integer])

3.1.11 Example

The following is an example game written in RECYCLE called Agram. Agram is a simple Nigerian trick-taking card
game for 2 to 6 players. Players are dealt six cards from a reduced French deck, and play six tricks. To win a trick,

3.1. RECYCLE 15

RECYCLEd CardStock Documentation, Release 0.5

players must follow the suit of the lead player with a higher card; there is no trump suit. The object of the game is to
win the last trick.

1 ;; Agram
2 ;;
3 ;; https://www.pagat.com/last/agram.html
4

5 (game
6 (declare 4 'NUMP)
7 (setup
8 (create players 'NUMP)
9 (create teams (0) (1) (2) (3))

10

11 ;; Create the deck source
12 (create deck (game iloc STOCK) (deck (RANK (THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,

→˓NINE, TEN))
13 (COLOR (RED (SUIT (HEARTS, DIAMONDS)))
14 (BLACK (SUIT (SPADES, CLUBS))))))
15 (create deck (game iloc STOCK) (deck (RANK (ACE))
16 (COLOR (RED (SUIT (HEARTS, DIAMONDS)))
17 (BLACK (SUIT (CLUBS)))))))
18

19

20 ;; Shuffle and deal each player 6 cards
21 (do
22 (
23 (shuffle (game iloc STOCK))
24 (all player 'P
25 (repeat 6
26 (move (top (game iloc STOCK))
27 (top ('P iloc HAND)))))))
28

29 ;; players play a round 6 times
30 (stage player
31 (end
32 (all player 'P
33 (== (size ('P iloc HAND)) 0)))
34

35 ;; players play a hand once
36 (stage player
37 (end
38 (all player 'P
39 (> (size ('P vloc TRICK)) 0)))
40

41 (choice
42 (
43

44 ;; if following player cannot follow SUIT
45 ;; play any card, and end your turn
46 ((and (== (size (game mem LEAD)) 1)
47 (== (size (filter ((current player) iloc HAND) 'C
48 (== (cardatt SUIT 'C)
49 (cardatt SUIT (top (game mem LEAD))))))

→˓0))
50 (any ((current player) iloc HAND) 'AC
51 (move 'AC
52 (top ((current player) vloc TRICK)))))
53

(continues on next page)

16 Chapter 3. Code

RECYCLEd CardStock Documentation, Release 0.5

(continued from previous page)

54 ;; if following player and can follow SUIT
55 ;; play any card that follows SUIT, and end your turn
56 (any (filter ((current player) iloc HAND) 'T
57 (== (cardatt SUIT 'T)
58 (cardatt SUIT (top (game mem LEAD)))))
59 'C
60 ((== (size (game mem LEAD)) 1)
61 (move 'C
62 (top ((current player) vloc TRICK)))))
63

64 ;; if first player, play any card, remember it in the lead spot, and
→˓end your turn

65 ((== (size (game mem LEAD)) 0)
66 (any ((current player) iloc HAND) 'AC
67 (do
68 (
69 (move 'AC
70 (top ((current player) vloc TRICK)))
71 (remember (top ((current player) vloc TRICK))
72 (top (game mem LEAD))))))))))
73

74 ;; after players play hand, computer wraps up trick
75 (do
76 (
77 ;; solidfy card precedence
78 (put points 'PRECEDENCE
79 (
80 ((SUIT (cardatt SUIT (top (game mem LEAD)))) 100)
81 ((RANK (ACE)) 14)
82 ((RANK (TEN)) 10)
83 ((RANK (NINE)) 9)
84 ((RANK (EIGHT)) 8)
85 ((RANK (SEVEN)) 7)
86 ((RANK (SIX)) 6)
87 ((RANK (FIVE)) 5)
88 ((RANK (FOUR)) 4)
89 ((RANK (THREE)) 3)))
90

91 ;; determine who won the hand, set them first next time
92 (forget (top (game mem LEAD)))
93

94 (cycle next (owner (max (union (all player 'P ('P vloc TRICK))) using
→˓'PRECEDENCE)))

95

96 (all player 'P
97 (move (top ('P vloc TRICK))
98 (top (game vloc DISCARD))))
99

100 ;; if that was the last round, give the winner a point
101 ((all player 'P
102 (== (size ('P iloc HAND)) 0))
103 (inc ((next player) sto SCORE) 1)))))
104

105 (scoring max ((current player) sto SCORE)))

3.1. RECYCLE 17

RECYCLEd CardStock Documentation, Release 0.5

18 Chapter 3. Code

RECYCLEd CardStock Documentation, Release 0.5

3.2 CardStock

3.2. CardStock 19

RECYCLEd CardStock Documentation, Release 0.5

3.2.1 CardEngine

The data structure that holds the game state data

3.2.2 FreezeFrame

GameIterator

Transcript

3.2.3 Heuristics

Scorer

World

Heuristic

MeaningfulMoves

Variance

Fairness

Drama

Decisiveness

Clarity

Coolness

3.2.4 Running Experiments

Open “CardStockXam” project. Write up your game in RECYCLE. Alter the Program.cs class to create
an Experiment object for your game. Run the program in either Release or Debug mode. Choose “Release
Mode” to only see the results, or “Debug Mode” to see all game actions (better logs in the future).

3.3 AIPlayer

3.3.1 RandomPlayer

Random players are useful in many situations for CardStock. They can be deployed for initial playtesting to ensure a
game is robust to all player choices and unbiased toward a particular seating arrangement. They can also be employed
by more advanced AIPlayer implementations within Monte Carlo simulations.

In RandomPlayer, the MakeAction method simply returns a uniformly randomly chosen int within the range of 0 to
the number of choices given to the player.

20 Chapter 3. Code

RECYCLEd CardStock Documentation, Release 0.5

3.3.2 PIPMCPlayer

Perfect Information Pure Monte Carlo Players are the current default AI players for CardStock.

For each potential move in MakeAction_, the player simulates a set number (defined in the NUMTESTS static vari-
able) of random games. A unique subgame data structure and subgame iterator are created for each test. The subgame
iterator then constructs all the possible GameActionCollection moves with the BuildOptions method, the current move
actions are all executed, and then the choice is popped from the subgame iterator.

All players in the subgame are assigned to make choices randomly, and then the game is played out to completion.
Each player is assigned a score based on the inverse of their rank in the player list, where 1st place is the winning
player. These ranks are accumulated and averaged across all tests, and the index of the move where the current player
earned the highest rank is selected and returned.

3.3.3 MCTSPlayer

Monte Carlo Tree Search

3.3.4 ISMCTSPlayer

Information Sets Monte Carlo Tree Search

AIPlayer is an abstract class to be subclassed for all of the AI. It will know the number of players in the game, have
a Perspective which privatizes the hidden aspects of the game from this player, and a List that tracks the player’s
estimates of their current game position.

3.3.5 Perspective

A Perspective is a wrapper around a GameIterator_ and an int which is the current player’s index in the game cycle.
An AIPlayer can ask the Perspective for their view of the game through the GetPrivateGame_ method. This will
return a Tuple of a CardGame and GameIterator, where all the private Card information hidden from this player is
shuffled and replaced.

3.3.6 MakeAction

The MakeAction method is the critical method that needs to be overridden in any subclass of AIPlayer. When a choice
is found in the game, the number of potential moves will be passed in. The AIPlayer is expected to return an int which
is the index of their chosen move.

If your AIPlayer is being used in the Heuristics portion of CardStock, then within MakeAction, you should also
create an array of doubles with the estimated inverse rank of the player for each possible move and pass this to
RecordHeuristics for processing.

3.3. AIPlayer 21

	Overview
	Requirements
	Code
	RECYCLE
	CardStock
	AIPlayer

